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Abstract
We investigate one-electron properties of one-dimensional self-similar
structures called limit quasiperiodic lattices. The trace map of such a lattice
is nonconservative in contrast to the quasiperiodic case, and we can determine
the structure of its attractor. It allows us to obtain the three new features of
the present system: (1) The multi-fractal characters of the energy spectra are
universal. (2) The supports of the f (α)-spectra extend over the whole unit
interval, [0, 1]. (3) There exist marginal critical states.

PACS numbers: 61.44.Br, 64.60.Ak, 71.23.Ft

Since the discovery of a quasicrystal, deterministic and aperiodic systems have been attracting
much attention [1]. They are classified into a third group in addition to periodic systems
and random systems. Although they include a wide range of diverse structures, self-similar
structures such as the Fibonacci lattice or the Penrose tiling are especially important because
quasicrystals belong to materials of this type. In particular, a one-dimensional (1D) self-similar
structure has the symmetry described by a semi-group, and the electronic state on it exhibits
rich properties [2–5]. The presence of energy spectra and wavefunctions with multifractal
characters is peculiar to such systems. Here we will consider the problem of universality
among the structures of interest; in particular, we focus on an important class of self-similar
structures called limit quasiperiodic lattices.

An aperiodic array of two types of letters (sites), A and B, is called a self-similar lattice
(SSL) if it is invariant against a substitution rule (SR) [6]; an SR, σ , acts on the letters as
A

σ→ σ(A) := σA(A,B), B
σ→ σ(B) := σB(A,B), where σA(A,B) and σB(A,B) are

words of the two letters. σ can be specified by the pair (σA(A,B), σB(A,B)). With every
SR, we can associate a Frobenius matrix, M := (

a

c

b

d

)
with a and c (resp. b and d ) being the

numbers of A and B in σA(A,B) (resp. σB(A,B)); we shall call it the substitution matrix of
the SR or of the relevant SSL. If there are several locally isomorphic classes of SSLs with a
common substitution matrix, we may call them isomers. For example, two SSLs with SRs,
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(B,ABBA) and (B,ABAB), are isomers of the mixed mean lattice being specified by the
SR, (B,BAAB) [7]. When an SSL has a global centre of the reflection symmetry, it can be
called a symmetric SSL and the relevant SR a symmetric SR [8]. We may call an SR, (σA, σB),
palindromic if both σA and σB are palindromes, while we may call it quasi-palindromic if it is
written with a palindromic SR (σ ′

A, σ ′
B), as (σ ′

AB, σ ′
BB) (or (σ ′

AA, σ ′
BA)). Palindromic SRs

and quasi-palindromic ones produce symmetric SSLs. If a substitution matrix is specified, at
least one of the relevant isomers is a symmetric SSL. The three SRs presented above produce
all symmetric SSLs.

An important class of SSLs is formed of SSLs such that the structure factor consists only
of Bragg peaks [9, 10]. We shall denote it by the symbol �. An SSL in � has its own
Fourier module M, which is a dense set on the real axis. On the basis of a property of M,
the class � is divided, further, into the three subclasses (i) �I: quasiperiodic, (ii) �II: limit
quasiperiodic and (iii) �III: limit periodic. The number of the generators of M is two for
�I but infinite otherwise, while an SSL belongs to �I or �II iff the Frobenius eigenvalue
τ of the relevant substitution matrix M is a Pisot number. The Frobenius eigenvector of M
is given by the column vector t(1, ω) with ω := (τ − a)/b = c/(τ − d) being a positive
number. The Fourier module M of an SSL in �I or �II is written as M = (1 + ω)−1Z{ω}
with Z{ω} := Z[ω] ∪ τ−1Z[ω] ∪ τ−2Z[ω] ∪ · · ·, where Z[ω] := {x + yω | x, y ∈ Z}. Since
M is uniquely determined by M, it is common among different isomers. In particular, if M
is unimodular, the relevant SSL belongs to �I and vice versa. We may write for this SSL
M = (1 + ω)−1Z[ω] because τZ[ω] = Z[ω] and Z{ω} = Z[ω] for this SSL.

We shall denote by �s the subset composed only of the symmetric members in �. �s is
divided, further, into the three subsets, �s

I,�
s
II and �s

III. Self-similarity of an SSL allows us
to use the trace map (TM) for researches of the electronic states on it [2, 3]. The character of
the TM as a nonlinear map depends crucially on whether it is conservative or not [7, 11–13].
It is known that SSLs with conservative TMs form a special subset, �c

I , of �s
I [8, 13].

Previous researches on the one-electron states of SSLs have focused exclusively on �s. More
precisely, �c

I is investigated thoroughly [5] but �s
II and �n

I := �s
I − �c

I have never been
investigated, while there are a considerable number of papers on the subclass �s

III but they are
still at a rudimentary stage (see, for example, [7, 11]). The authors, therefore, investigated
in detail the case of the subclass �s

II. Though �s
II appears a simple extension of �s

I , it turns
out as shown later that its one-electron states exhibit a remarkably different character from
the case of the latter. We shall call hereafter an SSL in �s

II a limit quasiperiodic lattice
(LQL), while the one in �c

I is called a conservative SSL. Note that an LQL is never conservative
[13]. The Fibonacci lattice is a representative of �c

I but the mixed mean lattice is a case
of �s

II.
Generic characters of one-electron states of an SSL can be investigated using the tight-

binding Hamiltonian H, each site-energy of which takes VA or VB depending on the type of
site [5]. The unit of energy can be so chosen that the transfer integral assumes −1. It was
shown generally that the energy spectrum σ = σ(H) is singular continuous [14]. This means
that the integrated state density H(E) per one site is a devil’s staircase. The set, Gσ , of the
heights of all the steps of the staircase is a discrete subset of the unit interval [0, 1], and is
determined by the gap labelling theorem [15]. Since σ is a multifractal, the distribution of its
singularity α in σ is characterized by the f (α)-spectrum, whose support is a closed interval,
[αmin, αmax] ⊂ [0, 1] [5]. A remarkable feature of an SSL is that σ has an infinite number
of centres of local self-similarity [4]. Let σls be the set of all such centres. Then, the set,
� := {H(E) | E ∈ σls}, is the second important object to Gσ to characterize σ .

In the trace map formalism, a homomorphism is defined from F(A,B), the free semi-
group generated by the two generators A and B, into SL(2, R) [7, 12, 16]. The image of
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W ∈ F is called the transfer matrix and is written as Ŵ , which is a product of Â and B̂. The
pair of transfer matrices, {Ân, B̂n}, which are associated with the pair {An,Bn} := σn{A,B},
is an important object in the trace map formalism. A similar pair in the next generation is
related to that pair by a recursion relation. If a supplementary transfer matrix is introduced
by Ĉn := ÂnB̂n, the recursion relation yields another one defined for the traces of Ân, B̂n

and Ĉn. The trace map is associated with this recursion relation, and defines a 3D dynamical
system over a 3D phase space R3: r → T r with r = (x, y, z) [2, 6, 12]. T x, T y and T z are
polynomials with integral coefficients. The starting point of an orbit O(E) := {rn | n ∈ N}
of the TM is given by r1 = (VA − E,VB − E, (VA − E)(VB − E) − 2), which depends on the
parameters VA, VB and E though the TM itself does not depend on them.

Noncommutativity between Ân and B̂n can be quantified by In := 1
2 Tr[Ân, B̂n]2,

which is written as In = I (rn) with I (r) = x2 + y2 + z2 − xyz − 4 [2]. It follows
that I (r1) = (�/2)2 with � := VB − VA. It can be shown generally that there exists
a polynomial P(r) such that [Ân+1, B̂n+1] = P(rn)[Ân, B̂n] for a palindromic substitution
rule but [Ân+1, B̂n+1] = P(rn)[Ân, B̂n]B̂n for a quasi-palindromic one [17]. This yields the
identity I (T r) ≡ [P(r)]2I (r), where |P(r)| ≡ 1 for the conservative case but deg(P ) � 1
otherwise [16]. Hence, I (r) is an invariant of the TM only for the conservative case but I (r)
is a semi-invariant for the general case because the TM never changes its sign [6]. Let us
assume that Ân and B̂n for ∃n ∈ N are not commutative and, besides, that P(xn, yn, zn) = 0
for some E ∈ σ . Then, Âm, B̂m are commutative for ∀m � n + 1, and we can conclude that
the relevant eigenstate will be extended as in the case of a periodic system [18]. Different
extended states may be obtained from the roots of a similar equation at a different generation.
Therefore, an SSL may have an infinite number of extended states unless it is conservative.

The dynamical system defined by the TM, T, is characterized by its limit cycles. If a
point in R3 belongs to a limit cycle with period p, it is a fixed point of T p and an orbit starting
from it is a pure cycle. A necessary and sufficient condition for E ∈ σ to belong to σls is
that O(E) falls on a limit cycle [5]. If this is satisfied, we can determine the singularity
α = α(E) by a linear analysis of T p around the relevant fixed point [3]. The wavefunction
of the corresponding eigenstate is known to be asymptotically self-similar; the spatial ratio of
the self-similarity is equal to τp [5].

Though I (x, y, z) is not an invariant of the TM, T, of a limit quasiperiodic lattice,
the curved surface defined by the equation I (x, y, z) = 0 is an invariant surface [6]. Its
restriction, S, into the cube [−2, 2]3 ∈ R3 is a closed surface as shown in figure 2. S is a ball
with tetrahedral point symmetry but has four cusps located at four of the eight corners of the
cube [11]. A coordinate system can be introduced into S by x = 2 cos (2πu), y = 2 cos (2πv)

and z = 2 cos [2π(u + v)] with (u, v) being a variable on the 2D torus T2 := R2/Z2. Actually,
S is doubly covered by T2 because ±(u, v) are mapped onto a single point on S. The origin
(0, 0) of T2 corresponds to (2, 2, 2) in R3. The TM induces a 2D dynamical system over T2:
T (u, v) = (u, v)M with M being the relevant substitution matrix. With these machineries
together with a theory of algebraic number theory, we can determine all the cycles of the
dynamical system, which will be presented elsewhere.

We shall consider first a periodic system (� = 0). In this case, every 3D orbit of
T is confined to S from the very beginning. The initial state r1 of the orbit O(E) with
E = −2 cos 2πκ corresponds to (u1, v1) = ±(κ, κ) on S, where κ is the rationalized wave
number of a plane wave state. It follows that (un, vn) = ±(

L(A)
n κ, L(B)

n κ
)

with L(A)
n and

L(B)
n being the numbers of the letters in An and Bn, respectively. A necessary and sufficient

condition for the 2D orbit {(un, vn) | n ∈ N} to converge on (0, 0) ∈ S is equivalent to κ ∈ M
[9, 10]. On the other hand, a condition for the 2D orbit to fall on a limit cycle with period
p is that {(un+p ∓ un, vn+p ∓ vn) | n ∈ N} converges on (0, 0) ∈ S. Using the fact that the
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Figure 1. The energy spectrum of the mixed mean lattice with � := VB − VA = 1.

Figure 2. Invariant surface: I (x, y, z) = 0.

ratios L
(A)
n+p

/
L(A)

n and L
(B)
n+p

/
L(B)

n tend to τp as n goes to infinity, we can show that a necessary
and sufficient condition for that condition to be satisfied is given by (τp − 1)κ ∈ M or
(τp + 1)κ ∈ M, which is equivalent to the condition κ ∈ Q[ω] −M with Q[ω] := {s + tω | s,

t ∈ Q}. Thus, the behaviour of the TM of a periodic system has been completely revealed.
Since the energy spectrum of the periodic system is absolutely continuous, α(E) takes 1.3

Two states with wave numbers ±κ degenerate in energy and the corresponding two orbits of
the TM are identical, so that we can assume 0 � κ � 1/2. The number κ is nothing but the
normalized value per one site of the number of nodes in the relevant sinusoidal wave. Since
H(E) is related to κ = κ(E) by the equation H = 2κ(E), the asymptotic behaviour of the
TM at the energy E is determined by the value of H(E) ∈ [0, 1].

We will proceed to the case of a non-periodic system (� 
= 0). Since an LQL (limit
quasiperiodic lattice) has reflection symmetry, every energy level has its own parity with
respect to the centre of symmetry. If � is changed adiabatically from zero to the present value,
every energy level will change continuously because double degeneracies present at � = 0 do
not matter if the parity is specified. It follows that κ remains the normalized number of nodes.
Then, the asymptotic behaviour of the TM will be determined by the value H = H(E), and
the rule is the same as described above for the periodic system. Thus, we can conclude that
� = Q[ω] ∩ [0, 1], which is a similar result to the one obtained in [4] for the case of the
Fibonacci lattice. A remarkable property of the TM of an LQL is its universality. It is based
on the two points: (1) the TM does not explicitly depend on the parameters � and E. (2) It

3 However, α = 1/2 for the case where E is located at a band edge.
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(a) (b)

Figure 3. The f (α)-spectra of the energy spectra of periodic approximants for the mixed mean
lattice (a) and a log–log plot of δn := α

(n)
max − 1 versus the generation number n (b). The data from

the fourth to the ninth generations are used. The data in the region α < 0.2 are cut because their
accuracies are insufficient on account of the presence of marginal critical states. The f (α)-spectra
of the Fibonacci lattice are superposed for comparison. The asymptotic linearity of the plot in
(b) concludes that δn tends to zero in an inverse power law for n as n goes to infinity.

is essentially of 3D character, and not confined to a 2D manifold as in the conservative case.
Thus, the attractor is independent of the value of �, and identical to that of the periodic system.
It follows that the f (α)-spectrum of σ is universal. Moreover, we can conclude that α = 1
for every centre of local self-similarity of σ (see footnote 3), and, consequently, αmax = 1.
We will show it explicitly here for the case of the mixed mean lattice, for which τ = 1 +

√
3

and ω = τ/2. The condition (τp − 1)κ ∈ M is satisfied for this case by p = 1 and κ = 1/3,
and the relevant 3D orbit of T converges to a 1-cycle. The scaling parameter determined by a
linear analysis of T around the relevant fixed point, (−1,−1,−1), is shown as exactly equal
to τp with p = 1, so that α = 1.

The gap-labelling theorem concludes that Gσ = M ∩ [0, 1] [15], which is expected,
also, from a perturbative consideration. The gap labelled by H ∈ Gσ is bounded by two
energy levels located at band edges. However, the corresponding fixed point (2, 2, 2) of the
TM is a singularity of S, and we cannot conclude that α = 1/2 for these two energy levels.
Surprisingly, it turns out that αmin = 0, so that the relevant states are marginal critical states,
which we can prove by a similar technique to the one used in [19]4. This and the result
αmax = 1 are consistent with the f (α)-spectrum being universal because there is no reason
why the value of αmin or αmax must take an odd value. We show in figure 3 the f (α)-spectrum
of the energy spectrum in figure 1. The broadness of the f (α)-spectrum means that the energy
spectrum of an LQL is more inhomogeneous than that of a conservative SSL. Since both �

and Gσ are determined solely by the substitution matrix, we expect that, if there are several
symmetrical isomers, their f (α)-spectra belong to a common universality class although their
TMs are different.

The TM derived from a conservative SSL is a 2D map on the curved surface I (x, y, z) =
(�/2)2. Since this surface depends on the value of �, the f (α)-spectrum as well as αmin and
αmax are not universal. This is consistent with the known fact that αmin > 0 and αmax < 1 for
every conservative SSL (see figure 2) [2, 5]. The conservative SSLs are actually minorities
in �s

I , and one-electron properties of nonconservative SSLs in �s
I have not been investigated

4 A marginal critical state is a peculiar critical state discovered for the case of a ternary SSL in [19]. It exhibits a
non-power-law scaling.
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yet. The present theory is basically applicable to this case; the only modification needed is to
replace the Fourier module by M = (1 + ω)−1Z[ω]. Thus, among isomers belonging to �s

I ,
only the conservative member is nonuniversal. Note, for example, that the substitution rule,
(ABA,ABABA), produces a conservative SSL but its isomer, (ABA,BAAAB), does not.

Although no substance which takes a structure represented by an LQL as its
thermodynamically stable phase is known, such a structure is realizable as an artificial
superlattice. Since a transfer matrix formalism can be applied for more general 1D Schrödinger
equations, the results of this letter apply to the electronic state in such an artificial superlattice
as well [20]. Furthermore, it is basically applicable to a propagation in a stratified substance
of an ultrasonic wave, an electromagnetic wave (light) and a spin wave as well. If, for
example, a lower marginal critical state is used as a channel of light, the speed of light will
fall dramatically.

In conclusion, one-electron properties of limit quasiperiodic lattices exhibit a universality
in contrast to the case of quasiperiodic ones, and a universality class is specified solely by the
substitution matrix.
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